Integrating Person-Centered and Variable-Centered Analyses: Growth Mixture Modeling With Latent
نویسندگان
چکیده
Background: Many alcohol research questions require methods that take a person-centered approach because the interest is in finding heterogeneous groups of individuals, such as those who are susceptible to alcohol dependence and those who are not. A person-centered focus also is useful with longitudinal data to represent heterogeneity in developmental trajectories. In alcohol, drug, and mental health research the recognition of heterogeneity has led to theories of multiple developmental pathways. Methods: This paper gives a brief overview of new methods that integrate variableand person-centered analyses. Methods discussed include latent class analysis, latent transition analysis, latent class growth analysis, growth mixture modeling, and general growth mixture modeling. These methods are presented in a general latent variable modeling framework that expands traditional latent variable modeling by including not only continuous latent variables but also categorical latent variables. Results: Four examples that use the National Longitudinal Survey of Youth (NLSY) data are presented to illustrate latent class analysis, latent class growth analysis, growth mixture modeling, and general growth mixture modeling. Latent class analysis of antisocial behavior found four classes. Four heavy drinking trajectory classes were found. The relationship between the latent classes and background variables and consequences was studied. Conclusions: Person-centered and variable-centered analyses typically have been seen as different activities that use different types of models and software. This paper gives a brief overview of new methods that integrate variableand person-centered analyses. The general framework makes it possible to combine these models and to study new models serving as a stimulus for asking research questions that have both personand variable-centered aspects.
منابع مشابه
Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes.
BACKGROUND Many alcohol research questions require methods that take a person-centered approach because the interest is in finding heterogeneous groups of individuals, such as those who are susceptible to alcohol dependence and those who are not. A person-centered focus also is useful with longitudinal data to represent heterogeneity in developmental trajectories. In alcohol, drug, and mental h...
متن کاملMixture Modeling: A Useful Analytical Approach for Drug Use Studies
The analytic methods often used in drug use studies, such as ANOVA, multiple regression, logistic regression, multilevel models, and structural equation modeling (SEM) including path analysis, factor analysis, and latent growth curve model, are variable-centered approaches. Those approaches assume that the study sample arises from a homogeneous population; and focus on relations among variables...
متن کاملAn introduction to latent variable mixture modeling (part 1): overview and cross-sectional latent class and latent profile analyses.
OBJECTIVE Pediatric psychologists are often interested in finding patterns in heterogeneous cross-sectional data. Latent variable mixture modeling is an emerging person-centered statistical approach that models heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of this article is to offer a nontechnical introd...
متن کاملGrowth mixture modeling of academic achievement in children of varying birth weight risk.
The extremes of birth weight and preterm birth are known to result in a host of adverse outcomes, yet studies to date largely have used cross-sectional designs and variable-centered methods to understand long-term sequelae. Growth mixture modeling (GMM) that utilizes an integrated person- and variable-centered approach was applied to identify latent classes of achievement from a cohort of schoo...
متن کاملThe development of loneliness from mid- to late adolescence: trajectory classes, personality traits, and psychosocial functioning.
Although loneliness is a common problem across late adolescence, its developmental course has not been investigated in depth in this period of life. The present study aims to fill this gap by means of a five-wave cohort-sequential longitudinal study spanning ages 15 to 20 (N = 389). Both variable-centered (i.e., latent growth curve modeling) and person-centered (i.e., latent class growth analys...
متن کامل